Ptychography(扫描相干衍射成像)
通过移动样品或者孔径光阑获得被照明样品区域有部分重叠的衍射图样,增加数据冗余性,扫描相干衍射成像(ptychography)打破了CDI对孤立样本的限制,同时实现了大视场范围和高空间分辨率的定量相位成像[1-3],其空间分辨率不受扫描间隔的影响,视场范围理论上可以无限大,且收敛速度快、抗噪声能力强。尽管ptychography技术在X射线科学界出现的时间相对较短,但它已经迅速发展成为一种有吸引力的显微成像技术,并且因为ptychography可与厚样品和已建立的样品制备方案相匹配,该技术已在世界上的大多数同步辐射装置等大型光源上广泛应用,用于解决生物学、材料科学和电子学中的诸多结构问题。此外,ptychography还可以提供照明光波场本身的精确信息,这一特性已在许多应用中被利用来表征X射线的性能。除了X射线大型光源,ptychography也被广泛应用于可见光[4]、极紫外[5]、太赫兹[6]和电子[7]中。
[1] Rodenburg J M, Hurst A C, Cullis A G, et al. Hard-x-ray lensless imaging of extended objects[J]. Physical Review Letters, 2007, 98(3): 034801.
[2] Guizar-Sicairos M, Fienup J R. Phase retrieval with transverse translation diversity: a nonlinear optimization approach[J]. Optics Express, 2008, 16(10): 7264-7278.
[3] Thibault P, Dierolf M, Menzel A, et al. High-resolution scanning x-ray diffraction microscopy[J]. Science, 2008, 321(5887): 379-382.
[4] Tian L, Li X, Ramchandran K, et al. Multiplexed coded illumination for Fourier Ptychography with an LED array microscope[J]. Biomedical Optics Express, 2014, 5(7): 2376-2389.
[5] Zhang B, Gardner D F, Seaberg M D, et al. High contrast 3D imaging of surfaces near the wavelength limit using tabletop EUV ptychography[J]. Ultramicroscopy, 2015, 158: 98-104.
[6] Valzania L, Feurer T, Zolliker P, et al. Terahertz ptychography[J]. Optics Letters, 2018, 43(3): 543-546.
[7] Ophus C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond[J]. Microscopy and Microanalysis, 2019, 25(3): 563-582.